

Abstracts

A Finite Difference, First-Order Perturbation Method for Attenuation in Arbitrarily Shaped Waveguides

M.J. Beaubien and A. Wexler. "A Finite Difference, First-Order Perturbation Method for Attenuation in Arbitrarily Shaped Waveguides." 1970 G-MTT International Microwave Symposium Digest of Technical Papers 70.1 (1970 [MWSYM]): 156-159.

The simplest and most frequently used method employed in the calculation of waveguide wall losses proceeds as follows: (1) solve the electromagnetic field under the assumption that the walls are perfectly conducting; (2) calculate the wall currents through knowledge of the magnetic field tangential to the wall; (3) square the current, at each point on the conductor surface, and multiply by the equivalent resistance due to skin effect $R_{\text{sub } s} = \sqrt{\omega \mu_0 / 2\sigma}$; and (4) integrate over the entire surface to obtain the total power loss. Note that the initial assumption of perfectly conducting walls excludes six-component hybrid fields from consideration --- which, in fact, must exist.

[Return to main document.](#)